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Abstract 

 
The paper deals with the modular hierarchical modelling and simulation possibilities of the simulation 

language SIMCOS. After a brief description of the modular modelling possibilities of modern modelling and 
simulation tools, the emphasis is put on the concept of precompiled dynamic submodels implemented in the 
SIMCOS simulation language. The simulation processor distinguishes between static, dynamic, continuous, 
discrete, delayed and non-delayed modelling constructs. Thus a very powerful simulation system with 
automatic sorting and runtime self-configuration was obtained. The precompiled modelling constructs can be 
used with textual or graphical modelling. In addition, a preprocessor for hierarchical modelling similar to the 
macro concept in modern simulation tools was also implemented. 
____________________________________________________________________________ 

 
1. Introduction 

 
The concept of modularity is perhaps the most important concept of each structured program. 

Using this principle, large simulation models are developed not as single, monolithic units, but as 
subdivided modules which operate as independent functional components of the overall system. 
Such a hierarchical decomposition of a model has the following advantages: 
• It is possible to focus attention on each component as a small problem. If a component is still too 

complicated, it can be further divided into smaller components until each module is of 
manageable size. 

• Modules which are too complicated cause details to be forgotten and interactions to be confused. 
• Several modellers can work simultaneously on a modelling and simulation project, since they 

work on different modules whose interactions must be carefully defined in advance. 
• It is easy to implement changes and corrections, as they should be made in one or a few simple 

modules. 
• The modular structure enables partial testing of a model,  i.e. testing component by component. 
• The modular developed model is extremely convenient for documentation purposes. 
• The modular structure enables the application of different algorithms to different subsystems 

(e.g. the model is divided into stiff and non-stiff submodels using stiff and non-stiff integration 
algorithms).  

• The modular concept is very important when the model is simulated on parallel processing 
systems, where submodels are assigned to different processors. 

• The modular hierarchical tool enables the modelling of components on a very physical level. 
These components can be used at higher levels in different configurations, not just in the 
configuration for which they were developed. 

• Finally, the modular model can be very realistic, reflecting the hierarchical structure inherent in 
the system. It can even be said that investigation of the natural but somewhat hidden hierarchical 
structures of real systems influences the development of modern modelling and simulation tools. 

 
Thus strongly influenced by software engineering proposals, modern simulation languages 

introduce very flexible possibilities for simulating hierarchical models. They enable the use of many 
preprogrammed submodels from a particular language library and the creation of user-defined 



submodels which can first be tested separately and then included in the library. Using such a library, 
a general purpose simulation tool can become a kind of application-oriented tool. 

 
2. Types of submodel implementation 

 
There are different ways in which submodels are implemented in simulation languages. The 

MACRO feature has been the most important facility, enabling modular modelling and simulation 
for a long period. It is still implemented in many modern simulation languages. During processing, 
all MACRO calls in the source simulation model are replaced by appropriate MACRO definition 
bodies, and their formal arguments are exchanged with the real ones. In  further processing, the 
sorting algorithm can arbitrarily change the order of all statements, so the MACRO feature does not 
cause any problems with the sorting algorithm. The main disadvantage of this approach is that, for 
each structural change, all model components must be reprocessed. So a MACRO feature cannot be 
treated as a modern hierarchical approach. 

The MODUL can be treated as a generalisation of the MACRO feature. Whereas MACRO implies 
that its inputs and outputs are known in advance, i.e. the cause and the consequence are fixed, this is 
not always necessarily the case. For example, the same model - an electrical component - can be 
described by the equation I=U/Z, U=IZ or Z=U/I, where I is the current, U is the voltage and Z is 
the impedance of this component. So the MACRO feature requires three possible submodels for the 
same physical law. Using the MODUL submodel, both equations can be implemented by one 
submodel because the formula manipulation routine also sorts the equation in the ‘horizontal 
direction’, depending on the context in which the equation is used. MODUL is rarely used in 
simulation languages (COSY - [2]), and it was perhaps mainly used as a subject for theoretical 
investigations. A similar concept implemented in DYMOLA [5] gives this modelling tool a very 
modern object orientation and significant support in the modelling phase. Physical components can 
be described by physical laws. Each equation is solved for the appropriate unknown variable and 
sorted within a simulation model. So the well-known description & ( , )x f x t=  of all CSSL simulators 
[9] is automatically derived. DYMOLA enables the implementation of component submodels on the 
true object and physical level, where components can be used in arbitrary configuration, not only in 
the configuration for which they were primarily developed. Of course, there are problems with 
nonlinearities, structural singularities, algebraic loop etc. These problems are only partly solved in 
DYMOLA. DYMOLA can be used to model combined systems (e.g. block diagrams, mechanical 
systems, electrical systems, hydraulic systems, ...). The connections of these components are not 
established through inputs and outputs (as in almost all CSSL simulators), but through more general 
connection structures called cuts. This approach allows us to couple components which influence 
each other. This is a more complicated situation than when “two operational amplifiers” (e.g. two 
blocks in a block diagram) are connected. 

Separately compiled submodels in some aspects provide an even more efficient submodel feature 
in new generation simulation languages. They are defined in a manner similar to subprograms in 
general purpose programming languages. These submodels are separately compiled and enable true 
hierarchical modelling and simulation structures, since they can be nested to any depth. The 
production of a simulation tool supporting separately compiled hierarchical structures is a very 
exacting and complicated task. Central manipulation of state variables and their derivatives or 
predictions and self-configuration, meaning that each submodel reserves its storage requirements 
and establishes the necessary pointers, must be performed. But the most difficult task is to define the 
hierarchical data base properly and to implement the sorting algorithm correctly [8]. The 
calculations which implement a submodel containing other submodels and/or blocks with delay 
attributes must, due to the sorting algorithm, be performed in several stages. Implementation is 
particularly complicated as submodels can have several inputs and outputs. SYSMOD and 
COSMOS [1], [6] are, in the sense of hierarchical model structures, very powerful. Influenced by 
software engineering proposals, they enable dynamic creation of submodels during the simulation. 
OOSlim [8] combines the object-oriented approach with the concept of precompiled modules. The 
sorting procedure is implemented in several phases. The precondition phase takes place at compile 



time, ensuring the marking of the most  obvious errors. The level evaluation phase takes place at run 
time and gives each instance of a hierarchical model a proper weight (i.e. level). The so-called post 
condition phase takes place at run time and handles algebraic loops. The final phase is the sorting 
procedure, which takes place at run time and sorts components of the model according to their level 
(i.e. weight). 

The implementation of so-called segments (e.g. ESL - [4]) seems to be a convenient feature of 
some modern simulation languages, making an additional contribution to the model definition 
modularity. Segments are in fact those parts of a model which are simulated separately. They 
communicate with each other only at defined prescribed time instants. The final goal of segment 
implementation is to simulate a model in a multiprocessor environment. However, they can be also 
used on sequential machines, where the multiprocessor environment is emulated. 

The meaning of object-orientation is sometimes misunderstand in the modern modular modelling 
and simulation approach. Object orientation on the modelling level means that the modeller can use 
submodels of a real process components in the way DYMOLA allows. Of course, it is easier but not 
necessary to implement such a tool with modern object-oriented programming languages. And if 
object orientation is extremely important for the modelling level, this is not true for a runtime 
simulation level. An executable object-oriented simulation program is still inefficient from the 
computational point of view. So a flat program is still preferred [3]. 

 
3. Implementation of modular constructs in SIMCOS simulation language 

 
The SIMCOS simulation language is a CSSL-type equation-oriented language developed at the 

Faculty of  Electrical Engineering in Ljubljana [10], [11], [12].  It works  as a compiler. The  model, 
which is coded in  CSSL syntax [9] or is described by a graphical block-oriented simulation scheme, 
is processed by the compiler into FORTRAN modules and a model data base. These modules are 
further processed by a FORTRAN compiler and linked with appropriate libraries into an executable 
program. The supervisor program automatically  handles all of these procedures and is able, 
together with a highly interactive user interface, not only to simulate the model but also to perform 
simple experiments (e.g. change model constants, output specifications, function generators' 
breakpoints) and complex ones (e.g. parameter studies, optimisation, linearisation, ...). Many 
integration algorithms (single step, multistep, low order, high order, extrapolation, stiff, ... ) cover 
all common numerical problems, giving the simulation tool an appropriate numerical robustness. 
Implementing real-time possibilities, the language was expanded with hardware-in-the-loop and 
man-in-the-loop simulation possibilities. Animation with the aid of AutoCAD defined schemes is 
also provided. 

The SIMCOS concept did not enable the implementation of a unified concept of the above-
described precompiled hierarchical constructs. So we implemented 
• precompiled dynamic blocks, and 
• hierarchical submodels. 
as two different additional possibilities. 

 
4. Precompiled dynamic blocks 

 
The concept  with precompiled dynamic blocks was implemented by several modifications to the 
SIMCOS simulation compiler, the runtime system and the graphical editor preprocessor. 



Features of the simulation compiler 
 
Modifications of the simulation compiler were mainly performed in a module for analysing 

function calls. The modified compiler distinguishes between different function calls or blocks. Fig. 
1 shows the basic grouping of modelling blocks. 

 
Fig. 1.  Basic grouping of modelling blocks 

Blocks can be static or dynamic. Static blocks which do 

not posses continuous or discrete states can be simple, 
function generators or multivariable ones. Simple blocks are mainly nonlinearities and standard 
signals. They are called as FORTRAN FUNCTIONs, and the calls are not modified during 
SIMCOS compilation. Function generators, due to the CSSL standard requirements [9], are 
appropriately preprocessed during compilation into a breakpoints data file, into program code for 
reading these points at runtime before the simulation run, and into a function call for function 
generators’ output evaluation in the DERIVATIVE runtime part. As FUNCTION in FORTRAN can 
only return a single value, a block with several outputs (multivariable block) can be implemented 
only by converting the FUNCTION call into a SUBROUTINE call during SIMCOS compilation. 
Fig. 2 shows an example in which Cartesian coordinates are transformed into the polar ones. The 
block is appropriately sorted before conversion from FUNCTION to SUBROUTINE call. 

 
SIMCOS source definition   After SIMCOS compilation in derivative 

module 
 
ARRAY POLAR(2), CART(2)   DIMENSION POLAR(2), CART(2) 
CART(1)=   ...     CART(1)=  ... 
CART(2)=   ...     CART(2)=  ... 

POLAR=CONV(CART)    CALL CONV(POLAR, CART) 
 

Fig. 2. Compilation of the call of a multivariable block 
 
All other function calls are treated as calls to dynamic blocks. They can be continuous (with 

integrator operator) or discrete (with delay operator), univariable or multivariable, non-delayed or 
delayed. As continuous and discrete blocks are uniquely implemented, processing during SIMCOS 
compilation is the same for both blocks. The blocks are distinguished for possible future 
expansions. During compilation, these blocks’ calls are modified by extensions with two arguments 
in function calls. One real variable is added for storing the output variable in cases where such  
blocks are multiply used. Another integer variable is used for storing the offset (the address) of the 
particular block in common arrays of states, derivatives and predictions. The latter grouping is 
important in terms of the sorting procedure. Non-delayed blocks are blocks which respond instantly 
to an input change. Delayed blocks are blocks whose outputs do not change instantly with inputs 
(e.g. integrators, discrete delays, appropriate transfer functions, zero order hold,...) and which can be 
used for disconnectiong model loops. Fig. 3 shows this grouping.    
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Fig. 3. Grouping of dynamic blocks 

 
All blocks except simple blocks and function generators must be installed in a special installation 

file, which lists the names of blocks (functions or subroutines) and appropriate grouping codes. So 
the system is opened for adding new blocks. The implemented concept also enables nested calls. 
However, nested calls must be properly horizontally sorted, since the sorting algorithm only sorts 
among rows (blocks). The PID control system shown in Fig.4 
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Fig. 4. PID control system with a second order model 

 
can be programmed as: 
 
U=PID(REF-Y,KP,KI,KD,TF) 
Y=SECOR(U,ZETA,OMEGAN) 
 
or 
 
U=PID(REF-SECOR(U,ZETA,OMEGAN),KP,KI,KD,TF) 
 
The second option means that the sorting is done by a user, since SECOR as a continuous 

dynamical function with the delayed attribute must first calculate its output. 
Fixed dynamic structures can be easily installed as delayed or non-delayed ones. However, using 

general structures as transfer functions or state space descriptions, the delayed or non-delayed 
character depends on the selected parameters. As they are only known at runtime during simulation, 
the only solution would be to implement the sorting procedure at runtime. The implemented 



compiler concept did not allow this modification, so the only solution was to implement two 
dynamic structures for such blocks, with and without delay. 

 
Structure of precompiled dynamic modules and the derivative module 

 
Fig. 5 shows the FORTRAN source code for the  second order system. 

 
function SECOR(zout,iofset,u,zeta,omegan) 
c       second order system 
         real u,zeta,omg 
         common /Z00OUT/IOUT 
         common/Z00000/nstates,x(150),dx(150),x0(150) 
         common /Z00009/z00008(10) 
         integer z00008 
         data nint/2/ 
         if(Z00008(9).ne.4) goto 10 
c       self-configuration and initialization of states 
              iofset=nstates 
              nstates=nsates+nint 
              x0(iofset+1)=0.0 
              x0(iofset+2)=0.0 

10     continue 
         if(IOUT.eq.1) goto 100 
c       derivatives evaluations 
              dx(iofset+1)=x(iofset+2) 
              dx(iofset+2)=u*omegan**2-2*zeta*omegan 
     *       *x(iofset+2)-omegan**2*x(iofset+1) 
         goto 200 
100   continue 
c       storing of outputs 
              zout=x(iofset+1)        
200        SECOR=zout 
         return 
         end        
 

Fig. 5. FORTRAN code for the second order system 
 
The program module can be used as a template to program similar continuous dynamical modules. 

In the first part, self-configuration and the initialisation is performed. Each block counts its own 
address (offset) iofset within the common vector of states and derivatives, and initialises its states. 
The following part consists of two operations: derivative evaluations, when a flag is IOUT=0, and 
output evaluations, when the flag is IOUT=1. These two parts are calculated during two calls to 
each dynamic module in the module for derivatives evaluations (DERIV). Fig. 6 shows the structure 
of the derivative evaluation module, which is generated by the simulation compiler. 

 
Declaration of variables 

 
IOUT=1 

 
Calculation of outputs of all dynamical blocks and other 
assignment statements in the sorted statements order 
e.g. Y=SECOR(Z00K01,Z00I01,U,ZETA,OMEGAN) 

 
IOUT=0 

 
Evaluation of derivatives of dynamic blocks 

e.g. Y=SECOR(Z00K01,Z00I01,U,ZETA,OMEGAN) 
 

Fig. 6. Structure of derivative evaluation (program module DERIV) 



 
Like continuous dynamical blocks, which operate with the centralised vectors of continuous states 

and derivatives, discrete dynamic blocks use a centralised vector of discrete states and predictions. 
However, updating of discrete states is done for each dynamic block separately and not centralised 
as in the integration module for continuous states. This enables different sampling intervals for each 
discrete block. During the first call in the derivative module, the discrete blocks calculate their 
outputs from the states and inputs. During the second call, the predictions of states and updated 
values of states (the values of states for the next sampling interval) are calculated.  

 
Features of the graphical editor 

 
Precompiled objects are also suported in the block-oriented graphical editor BLOCK, which 

enables model definition in a graphical way. As modelling constructs can be very complex, such a 
modelling approach is very efficient. 

 
Implemented blocks 

 
Table 1 shows the continuous and discrete blocks implemented in SIMCOS. Besides standard 

dynamic blocks, continuous and discrete industrial PID controllers were included. The blocks have 
integral windup protection, a switch from automatic to manual and vice versa, and different 
structures for the inclusion of differential term. 
 
  CONTINUOUS blocks        DISCRETE blocks 
Integrator Y=FIN(U,Y0)| Discrete delay Y=DDLY(U,D,STATES,TS) 
Vector integrator Y=VIN(U,N,Y0)|   
Mode control integrator Y=FKIN(U,Y0,IC,OP)|   
First order system Y=FLAG(U,K,TAU)|    
Integral system Y=FINTLG(U,K,TAU)   
Differential system  Y=DIFF(U,KD,TF)   
Lead-lag Y=FLEDLG(U,K,Z,P)    
Second order system Y=SECOR(U,ZETA,OMEGAN)   
Dead time Y=DELAY(U,TD,STATES,TS)   
Transfer function in 
polynomial form (without 
delay) 

Y=CTF(U,N,B,A) Transfer function in polynomial 
form (without delay) 

Y=DTF(U,N,B,A,TS) 

Transfer function in 
polynomial form (with delay) 

Y=CTFD(U,M,N,B,A) Transfer function in polynomial 
form (with delay) 

Y=DTFD(U,M,N,B,A,TS) 

Transfer function in factorised 
form (without delay) 

Y=CZP(U,N,K,Z,P) Transfer function in factorised 
form (without delay) 

Y=DZP(U,M,N,K,Z,P,TS) 

Transfer function in factorised 
form (with delay) 

Y=CZPD(U,M,N,K,Z,P) Transfer function in factorised 
form (with delay) 

Y=DZPD(U,D,M,N,K,Z,P,TS) 

State space description 
(without delay) 

Y=CSS(U,N,A,B,C,D,X)| State space description (without 
delay) 

Y=DSS(U,N,A,B,C,D,X,TS) 

State space description (with 
delay) 

Y=CSSD(U,N,A,B,C,X)| State space description (with 
delay) 

Y=DSSD(U,N,A,B,C,X,TS)  

Multivariable system in state 
space (without delay) 

Y=MCSS(U,N,M,L,A,B,C,D,X) Multivariable system in state 
space (without delay) 

Y=MDSS(U,N,M,L,A,B,C,D,X,TS) 

Multivariable system in state 
space (with delay) 

Y=MCSSD(U,N,M,L,A,B,C,X) Multivariable system in state 
space (with delay) 

Y=MDSSD(U,N,M,L,A,B,C,X,TS) 

PI controller U=PI(E,KP,KI) Sample&hold Y=SH(U,STATE,TS) 
PID controller U=PID(E,KP,KI,KD,TF) PID controller U=DPID(E,Q,STATES,TS) 
Industrial PID controller U=PIDAB(Y,R,U00,MA,KP,TI,T

D,TF,KA,GAMA,UMIN,UMAX) 
Industrial PID controller U=DPIDAB(Y,R,U00,MA,KP,TI,TD,TF,

KA,GAMA,UMIN,UMAX,TS) 
 

Table 1. Implemented precompiled dynamic blocks 
 
5. Hierarchical modelling 
 



Using a special preprocessor, hierarchical modelling is also available. Well-tested and previously 
developed programs for particular components can be reused as submodels in higher hierarchical 
levels. The hierarchical preprocessor is in some ways similar to the MACRO concept in simulation 
languages. The requirements for hierarchical preprocessor development were as follows: 
• CSSL syntax was taken into account. 
• The internal variables of submodels must be exchanged with working names so that each 

hierarchical model can be reused several times. 
• The preprocessor must be fast and efficient. 
• The user should not be concerned with sorting model statements.   

 
The submodel is defined in SIMCOS syntax with the header 

 
submodel NAME (output1,output2,... = input1,input2,...) 
   ... 
end 
 
and called with  
 
call NAME (output1,output2,... = input1,input2,...) 

 
The only limitation is in the PROCEDURAL block. If it is used in a nested submodel, its body can 

posses only  a FUNCTION or SUBROUTINE call. 
 

6. Conclusions 
 
As the concept of the SIMCOS simulation language did not enable implementation of a unified 

precompiled hierarchical approach, the precompiled dynamic blocks and the hierarchical 
preprocessor were implemented separately. Therefore, precompiled dynamic blocks do not enable 
nested structures. Only the block calls can be nested. On the other hand, the hierarchical 
preprocessor which works similarly to MACRO has no nesting level restrictions. With these 
extensions, SIMCOS became a very powerful and modular simulation tool for complex dynamic 
model simulation.   
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