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Abstract

The problem of modelling and simulating pipelines that are used for transporting different fluids is addressed in
the paper. The problem is solved by including fluid density in the model beside pressure and velocity of the medium.
First, the system of nonlinear partial differential equations is derived. Then, the obtained model is linearised and
transformed into the transfer function form with three inputs and three outputs. Four different forms of model
description are presented in the paper. Since transfer functions are transcendent, they cannot be simulated using
classical tools. Rational transfer function approximation of the model was found and that simple model was validated
on the real industrial pipeline. It was also compared to the model that does not take the changes in fluid density into
account. The latter model cannot cope with batch changes whereas the proposed one can.
© 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Real time transient model (RTTM) based leak monitoring systems require a sophisticated mathematical
model of the flow in pipelines. The so called “water hammer equations” are relatively simple mathemat-
ical models assuming isentropic flow; they are obtained using the principles of mass and momentum
conservation[1].

However, in the case when different fluids are transported through the same pipeline, the above model
is not adequate. The water hammer equation can easily be extended, as will be shown inSection 2. This
enables simplified description of multi-product-flows with multiple products or batches being transported
at the same time in one pipeline. Up to now, there is no analytical solution for this nonlinear, partial differ-
ential equation system available. Instead, numerical solution techniques like the method of characteristics
can be used[2].
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Another possibility to solve the problem is to use linearisation and Laplace transformation techniques
in order to get a frequency domain description. This leads to a simplified pipeline model with lumped
parameters. We hereby get some advantages: the classical system theory for multi-input multi-output
(MIMO) systems can be used, e.g. for controller design and system identification. The resulting algorithms
are less time-consuming and hence better suited for critical real time applications. Additionally, the
analysis of fluid transients caused by leaks is much easier.

In Section 2, the nonlinear model of a pipeline is derived that takes into account multiple fluids being
transported. InSection 3, the model is linearised, and inSection 4, a simplified model with lumped
parameters is given. The obtained models is compared to the one derived in[3] that assumes constant
density of the fluid. The results are validated on the real industrial pipeline inSection 5. At the end some
conclusions are given.

2. Mathematical model of the pipeline

The classical solution for unsteady flow problems is obtained by using the equations for continuity,
momentum, and energy. These equations correspond to the physical principles of mass, momentum, and
energy conservation. Applying these equations leads to a coupled nonlinear set of partial differential
equations and hence, they are very difficult to solve analytically. To date, there is no general closed-form
solution. Further problems arise in the case of turbulent flow, which introduces stochastic flow behaviour.
Therefore, the mathematical derivation for the flow through a pipeline is a mixture of both theoretical
and empirical approaches.

The following assumptions for the derivation of a mathematical model of the flow through pipelines
are made:

1. Fluid is compressible. Compressibility of fluid results in an unsteady flow.
2. Flow is viscous. Viscosity causes shear stresses in a moving fluid.
3. Flow is adiabatic. No transfer of energy between fluid and pipeline will be considered.
4. Flow is isothermal. Temperature changes due to pressure changes can be neglected for liquids. Under

these circumstances, temperature changes could only be the result of friction effects, but these effects
will also be neglected. Therefore, the temperature along the pipeline is constant.

5. Flow is one-dimensional. All characteristics of the pipeline such as velocityv and pressurep depend
only on thex-axis laid along the pipeline.

Consider now a pipeline of lengthLp with constant diameter

D = D(x) = 2R = constant (1)

The continuity equation in conservative form for the one-dimensional case yields[4]

dρ

dt
+ ρ

∂v

∂x
= 0 (2)

with densityρ(x), velocityv(x), and with the substantial or total derivative

dρ

dt
≡ ∂ρ

∂t
+ v

∂ρ

∂x
(3)
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The momentum equation in conservative form for the one-dimensional case yields[4]

ρ
dv

dt
= −ρg sin α − ∂p

∂x
+ ∂pL

∂x
(4)

with pressurep(x). The quantityg sin α is thex-component of the standard gravity vectorg. The pressure
losspL rely on the shear stressτR. The formula from Darcy and Weisbach[5] states that

∂pL

∂x
= −ρ

λv|v|
2D

(5)

with the dimensionless friction coefficientλ(v). This equation holds for laminar flow as well as for
turbulent flow. Laminar flow is described by[5]

λ = λ(v) = 64

Re
(6)

if the dimensionless Reynolds number

Re= D

ν
v (7)

is smaller than 2320 (ν is the kinematic viscosity of the fluid). For larger values of the Reynolds number,
flow is assumed to be turbulent. In that case,Eq. (6)can be replaced by an appropriately mixed theoretically
and empirically derived formula such as the formula of Colebrook[5]

1√
λ

= −2 log

(
2.51

Re
√

λ
+ 0.27

kR

D

)
(8)

with roughness heightkR as a measure of the roughness of commercial pipes.
UsingEqs. (4) and (5)we obtain

dv

dt
+ 1

ρ

∂p

∂x
+ g sin α + ρ

λv|v|
2D

= 0 (9)

The model of the pipeline is completed by

p = a2ρ (10)

with the (isentropic) speed of sounda of the fluid.Eqs. (2), (9) and (10)lead to the following mathematical
model that will be treated in the paper:

dρ

dt
+ ρ

∂v

∂x
= 0 (11)

dv

dt
+ 1

ρ

∂p

∂x
+ g sin α + λv|v|

2D
= 0 (12)

dp

dt
− a2dρ

dt
= 0 (13)
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3. Linearisation of the mathematical model

By replacing total derivatives with partial ones, multiplyingEq. (12)with ρ, and by insertingEq. (11)
into Eq. (13)we get

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0 (14)

ρ
∂v

∂t
+ ρv

∂v

∂x
+ ∂p

∂x
+ ρg sin α + ρλv|v|

2D
= 0 (15)

∂p

∂t
+ v

∂p

∂x
+ a2ρ

∂v

∂x
= 0 (16)

In order to simplify this system of partial differential equations, first the steady state will be evaluated.
It is obtained by setting to zero all partial derivatives with respect to time (∂/∂t := 0) which yields the
following set of ordinary differential equations (with respect tox):

v̄
dρ̄

dx
+ ρ̄

dv̄

dx
= 0 (17)

ρ̄v̄
dv̄

dx
+ dp̄

dx
+ ρ̄g sin α + ρ̄λv̄|v̄|

2D
= 0 (18)

v̄
dp̄

dx
+ a2ρ̄

dv̄

dx
= 0 (19)

This set of equations cannot be solved analytically. It was solved by MATLAB–SIMULINK for the
pipeline used for the verification of the model (seeSection 5). The results for̄p, v̄ andρ̄ are shown in
Fig. 1.

The convective termsρv∂v/∂x andv∂p/∂x in Eqs. (15) and (16), respectively, are small compared to
the derivatives with respect to timeρ∂v/∂t and∂p/∂t, respectively, and will be neglected. Next,Eqs. (15)
and (16)will be linearised around steady-state solution. In order to do this, new variables will be
introduced:

ṽ(x, t) = v(x, t) − v̄(x) (20)

p̃(x, t) = p(x, t) − p̄(x) (21)

ρ̃(x, t) = ρ(x, t) − ρ̄(x) (22)

After linearisingEqs. (15) and (16), and taking into accountEqs. (18) and (19), the following is obtained:

ρ̄
∂ṽ

∂t
+ ∂p̃

∂x
+ ρ̃g sin α + ρ̄λ|v̄|

D
ṽ + λv̄|v̄|

2D
ρ̃ = 0 (23)

∂p̃

∂t
+ a2ρ̄

∂ṽ

∂x
+ a2ρ̃

dv̄

dx
= 0 (24)

The last term inEq. (24)can be neglected due to the fact that dv̄/dx is very small (seeFig. 1). Using
notations that are common in the analysis of electrical transmission lines:

L = ρ̄ (25)
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Fig. 1. Steady state solution of the pipeline: pressurep̄, velocity v̄, and densitȳρ.

R = ρ̄λ|v̄|
D

(26)

C = 1

a2ρ̄
(27)

and by denoting

T = g sin α + λv̄|v̄|
2D

(28)

we get

L
∂ṽ

∂t
+ Rṽ + T ρ̃ = −∂p̃

∂x
(29)

C
∂p̃

∂t
= −∂ṽ

∂x
(30)

Since the fluid in the pipeline is almost incompressible, the dynamics ofρ in Eq. (14)are relatively slow,
compared to those ofv andp in Eqs. (15) and (16). As a consequence, the velocity profile along the
pipeline is nearly constant within each time instant. Due to a special reason that will be explained later,
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the derivative∂v/∂x will not be neglected inEq. (14). Rather, it will be approximated with a very small
constant�vx. Linearising(14)and considering(22) then yields:

∂ρ̃(x, t)

∂t
+ ṽ(x, t)

dρ̄(x)

dx
+ v̄(x)

∂ρ̃(x, t)

∂x
+ ρ̃(x, t)�vx = 0 (31)

Note that d̄ρ/dx is very small (seeFig. 1). It could be neglected inEq. (31), but it will not be at this point
since its influence is similar to the influence of dv̄/dx (seeEq. (17)).

The first step in obtaining analytical solution of the system is to solveEq. (31)by applying Laplace
transformation on it. It is assumed that it is permissible to interchange the order of differentiation with
respect tox and the taking of the Laplace transform. The consequence is that the first-order ordinary
differential equation is obtained[6]

sρ̃(x, s) − ρ̃(x, 0) + ṽ(x, s)
dρ̄(x)

dx
+ v̄(x)

dρ̃(x, s)

dx
+ �vxρ̃(x, s) = 0 (32)

It is assumed here that the system rests at timet = 0, i.e.ρ̃(x, 0) = 0, p̃(x, 0) = 0, ṽ(x, 0) = 0. Eq. (32)
can then be transformed to

dρ̃(x, s)

dx
+ s + �vx

v̄(x)
ρ̃(x, s) = −dρ̄(x)

dx

ṽ(x, s)

v̄(x)
(33)

The solution of the homogenous part ofEq. (33)would be

ρ̃(x, s) = ρ0(s) e−mx (34)

with

ρ0(s) = ρ̃(0, s) (35)

m = s + �vx

v̄(x)
(36)

if m (or v̄) did not depend onx. Since the latter assumption is violated andEq. (33)is not homogenous,
the candidate for the solution is

ρ̃(x, s) = ρ′(x, s) e−mx (37)

InsertingEq. (37)into Eq. (33), and taking into account

dm

dx
= −s + �vx

v̄2

dv̄

dx
= −m

v̄

dv̄

dx
(38)

yields

dρ′(x, s)

dx
e−mx + ρ′(x, s) e−mx(−m − x

dm

dx
) + mρ′(x, s) e−mx = −dρ̄(x)

dx

ṽ(x, s)

v̄(x)
(39)

dρ′(x, s)

dx
= −ρ′(x, s)m

x

v̄

dv̄

dx
− emxdρ̄(x)

dx

ṽ(x, s)

v̄(x)
(40)

Since d̄v/dx and d̄ρ/dx are very small, it follows fromEq. (40)thatρ′ can be regarded as independent of
x (at least on the interval of interestx ∈ [0, Lp]). Therefore, the solution(34)will be treated in the paper.
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Similarly, dependence of physical parameters of the pipeline (L, R, C, T , andm) onx shall be neglected
in the rest of the paper since they are only functions ofv̄ andρ̄.

In the following, only the deviation model will be considered. To simplify the notation, the tildes will be
omitted in the equations. The varaiblesp, v, andρ will stand for the deviations of the respective variables
from the stationary values.

The next step in the derivation of a simple model of the pipeline is the analytical solution of linear
Eqs. (29) and (30). Performing the Laplace transformation on them yields

(Ls+ R)V(x, s) = −dP(x, s)

dx
− Tρ(x, s) (41)

Cs· P(x, s) = −dV(x, s)

dx
(42)

where stationary initial conditions̄v andp̄ were assumed, i.e.v(x, 0) = 0,p(x, 0) = 0. By differentiating
Eqs. (41) and (42)with respect tox

(Ls+ R)
dV(x, s)

dx
= −d2P(x, s)

dx2
− T

dρ(x, s)

dx
(43)

Cs
dP(x, s)

dx
= −d2V(x, s)

dx2
(44)

the following equations are obtained usingEqs. (41) and (42)

(Ls+ R) · Cs· P(x, s) = d2P(x, s)

dx2
+ T

dρ(x, s)

dx
(45)

(Ls+ R) · Cs· V(x, s) = d2V(x, s)

dx2
− CsTρ (46)

Taking into accountEq. (34)we obtain:

(Ls+ R) · Cs· P(x, s) = d2P(x, s)

dx2
− Tρ0(s)m e−mx (47)

(Ls+ R) · Cs· V(x, s) = d2V(x, s)

dx2
− CsTρ0(s) e−mx (48)

which are known as wave equations. Their solutions are

P(x, s) = C1(s) e−nx + C2(s) enx − Tρ0(s)m

n2 − m2
e−mx (49)

V(x, s) = C3(s) e−nx + C4(s) enx − CsTρ0(s)

n2 − m2
e−mx (50)

where

n2 = (Ls+ R) · Cs (51)
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The four expressions,C1(s), C2(s), C3(s), andC4(s) are not completely independent. By introducing(50)
into (41)and by differentiating(49)with respect tox, we obtain

(Ls+ R)

[
C3(s) e−nx + C4(s) enx − CsTρ0(s)

n2 − m2
e−mx

]

= nC1(s) e−nx − nC2(s) enx − Tρ0(s)m
2

n2 − m2
e−mx − Tρ0(s) e−mx (52)

FromEq. (52), the following relations betweenC1(s), C3(s), andC2(s), C4(s), respectively, are obtained

C1(s)

C3(s)
= Ls+ R

n
=

√
Ls+ R

Cs
= ZK (53)

C2(s)

C4(s)
= −Ls+ R

n
= −√

Ls+ RCs= −ZK (54)

since

Tρ0(s) e−mx

[
(Ls+ R)Cs

n2 − m2
− 1 − m2

n2 − m2

]
≡ 0 (55)

The termZK is called thecharacteristic impedance. The complete solution is obtained applying the
boundary conditions. First, using the boundary conditions forx = 0

P(0, s) = P0(s) = C1(s) + C2(s) − Tρ0(s)m

n2 − m2
= ZK(C3(s) − C4(s)) − Tρ0(s)m

n2 − m2
(56)

V(0, s) = V0(s) = C3(s) + C4(s) − CsTρ0(s)

n2 − m2
(57)

the coefficientsC3(s) andC4(s) are obtained in the following form

C3(s) = 1

2
V0(s) + 1

2ZK

P0(s) + Tρ0(s)

2ZK

1

n − m
(58)

C4(s) = 1

2
V0(s) − 1

2ZK

P0(s) + Tρ0(s)

2ZK

1

n + m
(59)

Next, the boundary conditions forx = Lp are used inEqs. (49) and (50)

P(Lp, s) = PL(s) = ZK[C3(s) e−nLp − C4(s) enLp] − Tρ0(s)m

n2 − m2
e−mLp (60)

V(Lp, s) = VL(s) = C3(s) e−nLp + C4(s) enLp − CsTρ0(s)

n2 − m2
e−mLp (61)

By introducing(58) and (59)into (60) and (61)the inverse chain representation of the pipeline is obtained

PL(s) = −ZKV0(s) sinh(nLp) + P0(s) cosh(nLp)

+ Tmρ0(s)

n2 − m2

[
cosh(nLp) − n

m
sinh(nLp) − e−mLp

]
(62)
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VL(s) = V0(s) cosh(nLp) − 1

ZK

P0(s) sinh(nLp)

+ Tmρ0(s)

Zk(n2 − m2)

[ n

m
cosh(nLp) − sinh(nLp) − n

m
e−mLp

]
(63)

Expressions(62) and (63)can be simplified by the evaluation ofn/m usingEqs. (36), (51), (25)–(27):

n

m
=

√
(Ls+ R)Cs

(s + �vx)/v̄
=

√
(ρ̄s + ρ̄λ|v̄|/D)1/a2ρ̄s

(s + �vx)/v̄
= v̄

a

√
s2 + λ|v̄|

D
s

(s + �vx)2
(64)

Note that|n/m|  1 since the sound speed is much bigger than the fluid speed (a � v̄). Consequently,
the terms withn/m in square brackets inEqs. (62) and (63)can be neglected. By taking into account

m

n2 − m2
= 1

m
((

n
m

)2 − 1
) ≈ −m−1 = − v̄

s + �vx

(65)

and
n

ZK

= Cs (66)

Eqs. (62) and (63)take the following form

PL(s) = −ZKV0(s) sinh(nLp) + P0(s) cosh(nLp) − T v̄ρ0(s)

s + �vx

(
cosh(nLp) − e−mLp

)
(67)

VL(s) = V0(s) cosh(nLp) − 1

ZK

P0(s) sinh(nLp) − T v̄ρ0(s)

Zk(s + �vx)
(− sinh(nLp)) (68)

The constant�vx is very small but positive (what can be seen fromFig. 1). Consequently, 1/(s+�vx) is
a stable transfer function. In the time scope of interest this transfer function is equivalent to an integrator,
and will be replaced by one in the equations of the model. This is the reason why�vx was not neglected
in the early phase of the model derivation. Similarly, the term e−mLp in Eq. (67)becomes

e−mLp = e−s+�vxv̄Lp ≈ e−Lpv̄s = e−τs (69)

and can be interpreted as a pure delay system (τ is the time needed for the fluid to reach the outlet from
the inlet of the pipeline – transport delay).

Apart from Eqs. (67) and (68), an additional equation is needed for the complete description of the
system. This equation defines the density at the pipeline outlet and can be obtained by settingx to Lp in
Eq. (34):

ρ(Lp, s) = ρL(s) = ρ0(s) e−mLp = ρ0(s) e−τs (70)

Finally, we arrive to the noncausal (the transfer function matrix goes to∞ ass → ∞) representation of
the pipeline:




PL(s)

VL(s)

ρL(s)


 =




cosh(nLp) −ZK sinh(nLp) −Tv0

s
( cosh(nLp) − e−τs)

− 1

ZK

sinh(nLp) cosh(nLp)
Tv0

Zks
sinh(nLp)

0 0 e−τs







P0(s)

V0(s)

ρ0(s)


 (71)
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The linearised model of the pipeline(71) can be written in one of the following four forms which
differ from each other with respect to the model inputs (independent quantities) and outputs (dependent
quantities):

1. Hybrid representation: InputsV0, PL, ρ0 and outputsVL, P0, ρL:




P0

VL

ρL


 =




1

cosh(nLp)
ZK tanh(nLp)

Tv0

s

(
1 − 1

cosh(nLp)
e−τs

)

− 1

ZK

tanh(nLp)
1

cosh(nLp)

Tv0

Zks
tanh(nLp) e−τs

0 0 e−τs







PL

V0

ρ0


 (72)

2. Hybrid representation: InputsVL, P0, ρ0 and outputsV0, PL, ρL:




PL

V0

ρL


 =




1

cosh(nLp)
−ZK tanh(nLp) −Tv0

s

(
1

cosh(nLp)
− e−τs

)
1

ZK

tanh(nLp)
1

cosh(nLp)
− Tv0

ZKs
tanh(nLp)

0 0 e−τs







P0

VL

ρ0


 (73)

3. Impedance representation: InputsV0, VL, ρ0 and outputsP0, PL ρL:




P0

PL

ρL


 =




ZK coth(nLp) −ZK

1

sinh(nLp)

Tv0

s

ZK

1

sinh(nLp)
−ZK coth(nLp)

Tv0

s
e−τs

0 0 e−τs







V0

VL

ρ0


 (74)

4. Admittance representation: InputsP0, PL, ρ0 and outputsV0, VL, ρL:




V0

VL

ρL


 =




1

ZK

coth(nLp) − 1

ZK

1

sinh(nLp)
− Tv0

ZKs

(
coth(nLp) − 1

sinh(nLp)
e−τs

)
1

ZK

1

sinh(nLp)
− 1

ZK

coth(nLp) − Tv0

ZKs

(
1

sinh(nLp)
− coth(nLp) e−τs

)
0 0 e−τs




×




P0

PL

ρ0


 (75)

It should be noted that the forms 1–4 represent causal models, whilstEq. (71)represent a noncausal
model. Therefore, the latter cannot be realised by means of simulation. This completes the derivation of
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the transfer functions of the linearised pipeline. The resulting transfer functions are transcendent. In the
next section, their approximations by rational transfer functions will be given.

4. Simplified pipeline model with lumped parameters

In this section, the rational transfer functions of the pipeline will be derived since such transfer functions
are much easier to simulate, e.g. when designing real time transient model based leak monitoring systems.
There are seven different transcendent functions (e−τs is the eighth one, but this one will be left as it is, since
it can be simulated directly—at least approximately) in the four pipeline forms of the previous section:
1/ cosh(nLp), (1/ZK) tanh(nLp), ZK tanh(nLp), ZK coth(nLp), ZK(1/ sinh(nLp)), (1/ZK) coth(nLp),
and(1/ZK)(1/ sinh(nLp)). Only admittance representation transfer functions, used in the next section
for verification of the model, will be analysed here (hybrid representation transfer functions can be found
in [3]). By expanding the transcendent transfer functions into a Taylor series we get

1

ZK

coth(nLp) =
√

Cs

Ls+ R
coth

(
Lp

√
(Ls+ R)Cs

)
≈ (1

2L
2
pLC + 1

24L
4
pR

2C2)s2 + 1
2L

2
pRCs+ 1

1
3L

3
pRLCs2 + (LpL + 1

6L
3
pR

2C)s + LpR

(76)

Fig. 2. The time courses of the densityρ – measuredρ at the inlet (dash-dot line), measuredρ at the outlet (solid line) and
simulatedρ (dotted line).
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This transfer function describes the change of the fluid velocity at one end of the pipeline if the pressure is
changing at the same end while the pressure at the other end and the density on the inlet remain constant.

1

ZK sinh(nLp)
=

√
Cs

Ls+ R

1

sinh
(
Lp

√
(Ls+ R)Cs

) ≈ 1
1
3L

3
pRLCs2 + (LpL + 16L3

pR
2C)s + LpR

(77)

This transfer function describes the change of the fluid velocity at one end of the pipeline if the pressure is
changing at the other end while the pressure at the same end and the density on the inlet remain constant. It
has a static gain 1/(LpR) which corresponds to the static change of the velocity due to changing pressure.

5. Validation of the simplified model

The models were validated on a real pipeline with the following data: length of the pipelineLp =
9854 m, velocity of sounda = 1059 m/s, friction coefficientλ = 0.0158, gravity constantg = 9.81 m/s2,
diameterD = 0.2065 m, and inclinationα = −0.00256 rad. Simulations of the plant were performed on

Fig. 3. The time courses of the fluid velocity at the inlet of the pipeline – measured velocity, model response without and with
the consideration of the densityρ.
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the lumped parameter model in admittance form that was obtained by insertingEqs. (76) and (77)into
Eq. (75).

The most significant change in the fluid densityρ occurs during a batch change, so the data was recorded
in the operation phase where the batch was changed twice. Due to operational reasons the pipeline must be
stopped before and after a batch change. The stationary operation between 7000 and 14,000 s was chosen
as the operating point.Fig. 2 shows the time courses of the (measured) densityρ at the inlet (dash-dot
line) and outlet (measured density—solid line; model response—dotted line) of the pipeline, respec-
tively. The batch changes (1000–5300 and 14,800–19,000 s) can be seen clearly. The model response
corresponds perfectly to the measured data for the second batch change, where the current operating
conditions meet the chosen operating point. However, during the first change some miss-agreement
can be noticed between the measured and the simulated density at the pipeline outlet. The difference
is expectable since the system is not situated in the operating point where the linearised model was
obtained.

Next, the velocity part of the lumped parameters model will be validated and compared to the model
presented in[3]. The latter was obtained based on assumption that the density of the fluid being transported
is constant all the time. The model proposed here takes the fluid changes into account. The comparison
will allow us to estimate the benefit of the extended model. Simulation results of the both models will be
compared to the real plant data.

Fig. 4. A detail ofFig. 3.
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In Fig. 3three time courses of the fluid velocity at the inlet of the pipeline are shown: the measured one
and responses of two models (with and without the consideration of the densityρ). It can be seen that
the proposed model which takes into consideration the densityρ can cope with the changeable operating
conditions whereas the model from[3] cannot. Note that the latter model performs very well between
7000 and 14,000 s where current density is approximately equal to the constant density of the simple
model. But after the batch change the simulation results are not very satisfactory. InFig. 4 a detail of
the Fig. 3 is depicted, where the transient phase can be seen in detail. Good coincidence between the
measured data and the proposed model response can be established.

6. Conclusion

The model of the multi-batch driven pipeline has been derived in the paper. To accommodate for
the changes in the density, the latter is included in the model of the pipeline. The resulting model was
the system of partial differential nonlinear equations. After linearisation and Laplace transformation a
transfer function matrix was obtained that was transcendent. Simulations of such functions are quite
complex and time consuming. This is why the lumped parameter approximation was found. The latter
enables classical simulation and is therefore suitable for observer based leakage detection. It has been
shown that the approximative model is capable of describing real plant dynamics. The experimentation
has also shown that much better results are obtained by that model than the one proposed in[3] if different
fluids are transported through the pipeline.
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