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Abstract - This paper proposes a new approach to predictive control of highly nonlinear processes based on a fuzzy 
model of the Takagi-Sugeno form. Standard Model Based Predictive Control (MBPC) methods use linear process mod- 
els and are therefore unable to deal with strong process nonlinearities. But, the advantage of linear MBPC is in imple- 
mentation duc to fast optimization algorithms and guaranteed convergence within each time sample. In our approach, 
step responses for different operating points are extracted on-line from the nonlinear fuzzy model and a modified lin- 
ear DMC algorithm is used. In this way, all the advantages of both fuzzy modeling of nonlinear processes and DMC 
control arc accomplished. For performance evaluation of this simple but efficient approach, a nonlinear pH-process is 
used. 
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INTRODUCTION also accepted in industry. Hundreds of industrial units all 
over the world are now running now under predictive con- 

The problem of controlling pH-value is found in many trol. Model Based Predictive Control is a control strategy 
practical areas, including waste water treatment, biotech- based on the explicit use of a process model to predict the 
nology processing and chemical processing. There are controlled variable over a long-range time horizon. 
two common characteristics of pH-control: 

In most applications of generic MBPC techniques (DMC, 
• diffuculties in controlling the pH-process, arising GPC, PFC,...) the process has been modeled over its oper- 

mainly from its heavy nonlinearity and uncertainty, ating range by an average linear (linearized) model (trans- 
• diversity in control approaches applied, ranging fer function, state space model, impulse or step response 

from simple PID control, adaptive control, non- model,...). But in the real world, nonlinearities are more 
linear linearization control, gain-scheduling control the rules than exceptions, and a fixed linear model might 
and various model-based control to modern con- not really result in the required performance, especially 
trol systems based on fuzzy systems and neural net- over wider operating ranges. For control of highly non- 
works (Gustafsson et al., 1995), (Henson and Se- linear pH-processes over a wider range, the use of aver- 
borg, 1994), (Lee et al., 1994), (Ritt et al., 1996), age linearized model wouldbe absurd. Even though some 
(Ylen and Jutila, 1996). accurate nonlinear models can be obtained by theoreti- 

One reason for the increasing number of papers in re- cal modeling, it is usually a difficult and time consuming 
cent years is the highly nonlinear character combined with task. Generic nonlinear black-box models, which are cur- 
the rather simple structure of mathematical model, which rently quite popular, are fuzzy models and neural network 
makes pH control suitable for illustrating new nonlinear models. Both of them can be easily identified from input- 
approaches. Another reason for such attention in the liter- output process measurements and yield good approxima- 
ature is the fact that practical pH-control has not yet been tion and generalization properties. 
finally solved (Gustafsson and Waller, 1992). 

In fact, the extension of an MBPC strategy for the use of 
In order to achieve effectiveness and high control perfor- nonlinear process models is a topic in the academic envi- 
mance of difficult nonlinear processes, an advanced con- ronment. Originally, MBPC algorithms were developed 
trol approach is adressed. Since most advanced control for linear processes, but the basic idea can be transferred 
techniques are based on a model of the process under con- to nonlinear systems. Unfortunately, this leads to a non- 
sideration, the existence of a good model is of extreme im- linear non-convex optimization problem with very com- 
portance, putationally demanding algorithms, usually too slow for 

real-time control. This fact has forced the control commu- 
In the last 10 years, Model Based Predictive Control nitytostudysimplificationsofthisgeneralapproachinor- 
(MBPC) has become an attractive research field in an- der to remove these drawbacks. Following this, theuseof 
tomatie control because of its advantages over conven- different approximate linear models of the process around 
tional techniques (e.g. PID control) and it has also been different operating points appears to be a good approach 
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to simplify the solution of the optimization problem con- Suppose the rule base of a fuzzy system is as follows: 
siderably. In our new approach, a black box nonlinear 
fuzzy model is used, which represents a collection of sev- Ri : ifxl is A i and x2 is B i then Yi -- f/(xl, x2) 
eral local linear models merged together with fuzzy logic. 
For predictive control, various step responses for differ- i = 1,.. .M (1) 
ent operating points are extracted on-line from the fuzzy 

where Xl and x2 are input variables of the fuzzy system, model, and a modified Dynamic Matrix Control (DMC) 
(Cutler and Ramaker, 1980) can be applied. The effec- y is an output variable and Ai, Bi are fuzzy sets charac- 

terized by their membership functions. The If-part (an- tiveness of both the identification algorithm of the fuzzy 
model and the control approach are demonstrated through tecedents) of the rules describe fuzzy regions in the space 

of input variables and the Then-parts (consequents) are a simulated example of a highly nonlinear pH-process in 
functions of the inputs, usually in linear form: 

the whole operating range. 

J~(X 1 ,X2) = aix I q- bix 2 + r i (2) 

F U Z Z Y  MODELING where ai, bi and r i are the consequent parameters. For ai= 
bi -~ 0 the model becomes a Takagi-Sugeno fuzzy model 

In recent years, fuzzy logic has seemed to be a very of the zeroth order. 
promising approach to process automation. The concept 
of fuzzy logic and fuzzy sets theory can be employed in Such a very simplified fuzzy model can be regarded as a 
different ways, not only in the field of control but also collection of several linear models applied locally in the 
in modeling (nonlinear) dynamical systems. A survey of fuzzy regions defined by the rule premises. The idea be- 
different approaches to fuzzy modeling can be found in hindthis kindofmodelingis close to the well-known con- 
(Babugka and Verbruggen 1996). cept of gain scheduling. 

In this paper, we focus on rule-based fuzzy systems, Rule-premises are formulated as fuzzy AND relations on 
i.e. systems whose input-output mapping is determined the cartesian product set X -- Xi x X2, and several rules are 
by a collection of fuzzy If-Then rules and by a corre- connected by a logical OR. Fuzzification of a crisp value 
sponding fuzzy inference mechanism. Fuzzy modeling xl produces a column vector 
is then concerned with building a fuzzy model capable, 
in some sense, of reflecting the major aspects of the dy- 111 ~-- [111A1' 111A2 . . . . .  111am] T (3) 
namical system, based on available information regard- 
ing the input-output of the system. The information may and similarly for a crisp value x2.' The degrees of fulfill- 
come from domain experts, expressed in terms of linguis- ment of all possible AND combinations of rule premises 
tic rules. Unfortunately, this usually delivers only a rough are calculated and written into matrix S. If the algebraic 
idea of the process behaviour, since the human experts product is used as an AND operator, this matrix can be di- 
cannot sense all the details and might not be able to quan- rectly obtained by multiplication: 
titatively express their observations. Since fuzzy systems 
are also mathematical models that can realize nonlinear S = 111 ® !12 = 111" I -tT. (4) 
mapping to an arbitrary accuracy, like neural network and 
universal function approximation, numerous approaches A crisp output value y is computed by a simplified algo- 
have been proposed for constructing fuzzy models from rithm for singletons as a weighted mean value (Center of 
input-output measurement data. Although the method de- Singletons): 
scribed in this paper can handle both qualitative and quan- ]~i~ i ~'.i m-- 1 Sij rij (5) 
titative information, we shall be concerned only with the Y - -  ~ . i n _ l  ]~jm=l Si j 
case based on numerical data. Still, compared to other 
nonlinear approximation techniques, fuzzy models pro- The dimensions of matrix S(m × n), which actually repre- 
vide a more transparent representation of the identified sents the structure of the model, depend on the dimensions 
model. The fuzzy model identified from numerical data of input fuzzy sets la I (m × 1)andltt 2 (n × 1). Parameters of 
can be expressed in the form of linguistic rules and can the fuzzy model rij are estimated from the measurements, 
be validated by experts. In this way, the usual validation using the standard least-squares algorithm. 
performed on fresh data sets is complemented by another 
method which enhances the reliability of the model, and 
helps to reject unreliable models. Model ing  dynamic  systems 

The described fuzzy model actually represents a static 
Takagi -Sugenofuzzy  models  nonlinear mapping between input and output variables. 

Dynamic systems are usually modeled by feeding back 
Depending on the structure of the rules, several types of delayed input and output signals. In the same way, the 
rule-based fuzzy models can be distinguished: relational system dynamics is captured in other kinds of nonlinear 
models, linquistic fuzzy models and Takagi-Sugeno fuzzy models, such as neural network models. The common 
models (Takagi and Sugeno, 1985). The last one is dis- structure forall these nonlinearmodelsisNARX(Nonlin- 
cussed in more detail below, ear AutoRegressive with eXogenous input) model, which 
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establishes a relation between past input-output data and In order to overcome this disadvantage, some attempts at 
the predicted output : using approximate local linear models for each operating 

point and linear MBPC algorithm have been reported (Ritt 
~f(k+ 1) = F(y(k),y(k-1) . . . . .  y(k-n+ 1), et al., 1996), (Ayala-Botto et al., 1996). Below, a new ap- 

u(k), u(k- 1),..., u(k-m+ 1) (6) proach to incorporating the nonlinear fuzzy model into the 
DMC algorithm is presented. 

where y(k),y(k- 1) . . . . .  , y (k-  n+ 1) and u(k),u(k- 
1),..., u(k- m+ 1) denote the delayed model output and 
input signals, respectively. The fuzzy model therefore ap- DMC Algorithm 
proximates the function F. In terms of Takagi-Sugeno 
fuzzy rules of the zeroth order, the model is given by: One of the first proposed MBPC methods, and still com- 

ercially the most succesful one, is Dynamic Matrix Con- 
Ri : if y(k) isAi,l and . . . y ( k - n + l )  isAi,n trol (DMC), introduced by Cutler (Cutler and Ramaker, 

and u(k) is Bi,i and ... u(k-m+l) is Bi,m 1980). The basic concept of the original algorithm is as 
follows: 

then ~i = ri (7) 

The DMC algorithm is based on a step response model of 

Until now, we assumed that the dynamic system under the process given by 
study can be adequately characterized by a mapping be- N 
tween past inputs-outputs and the predicted output. For- y(k) = EgiAu(k-  i) q- n(k) (8) 
mally, the problem of fuzzy modeling may be formulated i= l 
as follows (Nie at al. 1996): given a data set M, prior where y(k) is the process output, u(k) the manipulated 
knowledge Q and performance index I, (i) choose a fuzzy variable, gi denotes the elements of the process step re- 
model FM = (S, O, U) consisting of a structure S, a pa- sponse and n(k) is a disturbance acting at time instant k. 
rameter set 0, and a fuzzy reasoning algorithm U, (ii) de- 
sign a learning algorithm V, (iii) and use (N, Q, V) to con- t u~k) TY~k~ ~ 
struct (S, 0) subject to I. Each of the fuzzy models dis- l|o/ 

MLIIL  cussed in the previous section has its own learning and 
fuzzy reasoning algorithm and its own set of free param- k......~___, ~ * 
eters 0. In Takagi-Sugeno models, structure identifica- i m ~ - i  
tion means specifying operators for logical connectives, 
inference and defuzzification. Once the structure is deter- Fig. 1. Step response model 
mined (e.g. collections of local linear models), member- 
ship functions have to be selected (using different sources The predictive controller calculates a sequence of the fu- 
of information) and finally, consequent parameters can be ture actuation signal Au (k), Au(k+ 1) . . . . .  Au(k+Nu) over 
estimated by least squares, a certain control horizon Nu, such that it brings the pre- 

dicted output of the process as close as possible to a pre- 
If there is no prior knowledge, both the consequent pa- defined reference trajectory. This sequence is obtained by 
rameters and membership functions can be extracted from minimizing (with respect to Au(k+ j))  the cost function 
data using fuzzy clustering techniques, nonlinear opti- (9) 
mization, neural networks or inductive learning. N2 Nu-1 

J = ~ [~(k+j) - r(k+j)] 2 + ~ [~2Xu(k+j)] 2, (9) 
j = N  1 j = 0  

FUZZY MODEL-BASED PRE- assuming that after Nu the future control signal remains 
DICTIVE CONTROL constant (Au(k+j) = 0 for j >_ Nu). In this expression, 

r(k) is the desired reference trajectory, ~, a weighting fac- 
Model Based Predictive Control (MBPC) is a control tor and ~(k+j) are predictions of the values of the output 
strategy based on the explicit use of a dynamic model of in the time horizon j = NI, . . . ,  N2. These predictions de- 
the process to predict future process output over a cer- pend on the manipulated variables Au(k+j) and can be 
tain (finite) horizon and to evaluate control actions to rain- obtained from the process model. Nl and N2 are lower and 
imize a certain cost function. MBPC stands for a col- upper prediction horizons for the output signal. 
lection of several different techniques all based on the 
same principles. Originally, the algorithms were devel- The cost function J (9) can be rewritten in matrix form as: 
oped for linear processes, but the basic idea can be ex- 

J = Au T (k)[GTG + LI]Au(k) - 2e~GAu(k) + e~e0 (10) tended to nonlinear systems. This straightforward ap- 
proach (Braake te et al., 1994) is accompanied by a ma- where 
jor drawback: due to the nonlinear nature of the models 
(fuzzy models, neural network models or any other non- Aur(k) = [Au(k), Au(k+ 1), . . . ,  Au(k+N~- 1 )] (11 ) 

linear models), a generally nonlinear and non-convex op- is the vector of the future control increments to be calcu- 
timization problem has to be solved in each time sam- lated, 
pie. In real-time applications, we cannot guarantee that 
the global optimum is found within one sample period, e~ = [r(k+N])-pNt,...,r(k+N2)-PN2] (12) 
OLI~ 21:l]-tl 
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is a vector of known future errors, pj  represents the free block performs the following actions: step response ~, 
response of the process, and G is a matrix given by which corresponds to the range of current interest (be- 

tween old and expected steady-state), is calculated using 

I 
gN l ... gl 0 . . . . . .  0 a fuzzy model. For calculation of ~, the fuzzy model is 

G = gg~+l .. .  g2 gl 0 . . .  0 (13) simulatedin"free-run" (as aparallelmodel), i.e. thecal- 
. . . . . . . . . . . . . . . . . .  0 culated outputs from the model are fed back to the in- 

I.g/v2 . . . . . . . . . . . . . . .  gs2-N~+l put. The length of the step response is chosen with re- 
N gard to the largest time constant of local models, such that 

pj  = y(k) + 2~ (gj+i- gi)Au( k -  1) j = N l , . . . ,  N2 ~ contains information about both dynamic and static be- 
i=j+ 1 haviour. 

(14) 
The most important advantage of the DMC method is At the first look, one can see some similarities of this con- 
that if there are no constraints on the system inputs or out- trol scheme to a multi-model based adaptive control ap- 
puts, an analytical solution of the optimisation problem proach (Pickhardt 1996), which is oftenly used for nonlin- 
exists: ear processes. The multi-model consists of several linear 

Au(k) --- [GTG + ~,I] - l  GTe0 (15) so called sub-models which describe the characteristics of 
the system at a certain operating point. There exist several 

and gives Nu values of future increments of the control algorithms to detect changes of operating point and to se- 
signal. Only the first element of Au(k) is applied to the lect the best sub-model which meets the actual situation. 
process, and in the next time sample the solution is calcu- The main disadvantage of multi-model based approach is 
lated again using the receding horizon strategy, that the control performance strongly depends on a num- 

ber of sub-models. Problem arrises if actual certain op- 
erating point does not match any of predefined operating 

DMC Using the Fuzzy Model points. In our fuzzy model-based DMC approach, an ap- 
propriate model for current operating point is generated 

The Takagi-Sugeno fuzzy model described in the second on-line from overall nonlinear fuzzy model and actual op- 
section has to be utilized for the DMC algorithm. The erating point can take any value between upper and lower 
main idea of our approach is to combine the advantages of limits of operating range. 
black-box nonlinear modeling (fuzzy models) and DMC 
strategy in a way that is fast enough and suitable for real- The next section illustrates the proposed approach for pH- 
time implementation. Whereas for linear, time-invariant control. 
processes the dynamic matrix G needs to be calculated 
only once (off-line), the step response of a nonlinear pro- 
cess strongly varies according to the operating point and APPLICATION TO pH 
range of the signals. Basically, the same DMC algorithm PROCESS 
can be employed, but the step response vector g and the 
matrix G(u,y) have to be determined at each time instant A simplified schematic diagram of the simulation test 
(on-line) using a nonlinear model. In the case of nonlin- bench scale pH neutralization tank is shown in Fig. 3. 
ear processes, which can be approximated by local lin- 
ear models arround different operating points, it is usu- ~, c : i z a  
ally good enough to calculate the new matrix G only when F~ / 
the operating point of the system or the reference signal / 

i is changed. Assuming a step-wise set-point trajectory w, ] 
time instants for updating matrix G are well specified by I . . . . . . . .  
changes in set-point trajectory. The basic control scheme 
is shown in Fig. 2. 

Fig. 3. The pH system 

~, Here, we are looking at a case where a strong acid is 
neutralized by a strong base in water in the presence of 
carbonate (buffer), and the output of the process is the 
effluent pH value as described by (Henson and Seborg, 

Fig. 2. DMC control using fuzzy model 1994). A dynamical model for the pH process has been 
derived using conservation equations and equilibrium re- 

The DMC controller is placed in the low-level control lations (Gustafsson and Waller, 1992) employing a con- 
loop. The current step response for calculating matrix cept known as reaction invariant. Modeling asumptions 
G is supplied by the step response generator in the up- include perfect mixing, constant density, fast reactions 
per control level. At steps in the set-point trajectory, this and completely soluble ions. While keeping acid stream 
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Fa (HNO3) and buffer stream Fbf (NaHCO3) at a con- and output signals, which actually represent the partition 
stunt rate, the control objective is to follow some desired of the operating region into sub-regions, were determined 
pH trajectory by manipulating the influent base stream Fb by a few human inspections of the behaviour of the pro- 
(NaOH and traces of NaHCO3). cess, and are shown in Fig. 4. 

The chemical equilibrium for the process is obtained by ' ~  . . . . . .  

definingoutlet streamtw° reaction(i E [1,4]):invariants for each inlet stream and I : i i ~ i  :I' 

Wai = [H +] - [OH-] - [HCO3] - 2[CO~-] (16) o ,o --,..., 

Wbi = [H2CO3]+[HCO~-]+[CO~-] (17) ° : ~ Q ~ " - . / ~ ~ A  

whereWaiisacharge-relatedinvariantandWbiequalsthe li~ . ~ i  l f ~ "  AAAA6AAI " ~ ;  l ~];W!~,,; ~ 
total concentration of carbonate. Using the equilibrium 
constants: ° ' ~ ' ' ' ' 

Kal = [HCO3][H+][H2CO3] - l  (18) Fig. 4. Membership functions for Fb and pH 
Ka2 = [CO2-][H+][HCO~] -I  (19) 
Kw = [H+][OH -] (20) In general, the number, position and shape of member- 

ship functions can be done by several methods (cluster- 
an implicit relation for [H +] can be derived: ing techniques, neural network, genetic algorithms, etc.). 

The consequent parameters of the fuzzy model were de- 
Kw e.(_~ + ~ termined by the ordinary least-squares algorithm. [H÷] 2 

W a = [ n + ] - ' ~ - W b l + ~ + ~ + ~  (21) 

The above equation defines a static titration curve func- 
tion relating pH values to reaction variables. 

The complete dynamical model is given by a mass bal- ~ ( 
ance equation and two differential equations for the efflu- J ent reaction invariants (Wa4, Wb4): 

Ah = Fa+Fbf+Fb-CvX/rh os , ,,~,~,, . . . .  
xlo' 

hmWa4 = Fa(Wal - Wa4 ) -}- Fbf(Wa2 - Wa4 ) -'1- 
+ Fb(Wa3 -- Wan) Fig. 5. Validation of the fuzzy model (solid: process, 

dashed: model 
hAWb4 = Fa(Wbl -- Wb4) + Fbf(Wb2 -- Wb4) + 

+ Fb(Wb3 -- Wb4) (23) Fig. 5 shows the validation of the obtained fuzzy model 
using another data set. Additionally, the steady-state re- 
sponse of the fuzzy model, the so-called titration curve, is 

Nominal values of these parameters and operating con- compared with the steady-state response of the simulated 
ditions are taken from (Henson and Seborg, 1994). The process. 
acid and buffer flow-rates are supposed to be known and 
kept constant during experiments. This analytical model 
is used to simulate the "true" system. The sampling period 
for pH measurement and control is 15s. 

Fuzzy modeling of pH-process 

The Takagi-Sugeno fuzzy model of the described pH- 
process was constructed only from input-output data mea- 
surements (black-box model). For identifying the model, 
an amplitude modulated pseudo random binary signal ~ ,o ~,_.~ ~ ~o 
(PRBS) in combination with a step excitation signal was 
used. The dynamics of the process can be represented as Fig. 6. Steady-state titration curves (solid: process, 
a first order NARX model dashed: model 

pH(k + 1) = f[Ft,(k), pH(k)] (24) From the both two figures, one can conclude that for this 
pH process, the fuzzy model has good dynamic perfor- 

where f is an uknown nonlinear function approximated mance and is also able to capture the steady-state relation- 
by the fuzzy model. The membership functions for input ship of the process. 
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Fuzzy Predictive Control o fpH ical solution in the case of DMC control are combined. 
The effectiveness of the control scheme is shown by using 

The identified fuzzy model is integrated into a DMC pre- simulated bench scale pH-process. Despite its simplicity 
dictive control scheme in the manner described earlier in (fuzzy rules of zeroth order), the presented fuzzy model 
this paper (Fig. 2). The upper prediction horizon for out- has good accuracy in steady-state mapping, as well as in 
put signal is chosen as N2 = 10 and the control horizon prediction of dynamic behaviour. We believe that it could 
as Nu --- 4. The cost function also includes penalty on the also yield good performance for real-life pH control. 
control effort (~, = 0.3). Fig. 7 shows the simulation re- 
suits for the proposed fuzzy predictive approach consid- 
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